
Ranking Vulnerability for Web Application based
on Severity Ratings Analysis

Nitish Kumar#1, Kumar Rajnish#2 Anil Kumar#3
1,2,3Department of Computer Science & Engineering, Birla Institute of Technology, Mesra

Ranchi, Jharkhand, India

Abstract.-Vulnerability in web application persistently
challenges the security in the web application software products.
Now a day, Security is paramount way to protect software
against wicked attacks and other hacker risk so that the software
continues to function correctly under such potential risks. In
recent year, the communication through the internet has
increased in lapse and bounds. But the security in web
application has compromised because of lots of vulnerabilities
found in the web applications. Knowing these vulnerabilities
and their consequences, the software developer can get some
clue to develop the patches for most common vulnerabilities.
The main objective is to find the vulnerabilities causing more
adverse affect and rank those vulnerabilities. We propose a
mathematical model to rank the vulnerability for the web
application which will be based on vulnerability severity rating.

Keywords- vulnerability,

I. INTRODUCTION

Software security is an idea implemented to guard
software against wicked attack and other hacker risks so
that the software continues to function correctly under such
potential risks. Most software assaults happen because of
exploitation of multiple vulnerabilities in software
products, which are vital to the operation of any business,
association or even to the security infrastructure of a
country. Vulnerability in software can expose intellectual
property, user trust, and industry operations and services.
However, ensuring security is challenging because software
becomes more complex day by day now. It is continuously
reported to be vulnerable to attacks and compromises
despite of using most recent security techniques and
protocols. That is why software is one of the root causes of
all common computer security problems.Many experts in
the field of security such as SANS, provide practices to
control the security risks which consist of system
configuration sensitive data protection through encryption
and eliminating flaws from software applications.

Tom DeMarco stated that, “You can’t control what you
can’t measure.” This clearly states the importance of
metrics in software engineering. Metrics are quantifiable
measurement. Security metrics are quantitative pointer for
all the security attributes of an information system or
technology. Metrics help us to comprehend quality and
consistency of software. Metrics also provides a universal
way to exchange thoughts, to measure product and service
quality, and to improve a process. Significant attempts have
been put on quality control in the software development
industry, but, there are still a lot of vulnerabilities and

weaknesses that remain in software products. Software
vulnerabilities exist due to flaws and errors in design,
coding, testing, and maintenance of software. These
vulnerabilities could be exploited by attacker to
compromise the computing system where the software is
running on. Therefore, the number of vulnerabilities and
the severity of those vulnerabilities should be important
indicators for software security and trustworthiness.

We propose an approach to rank the vulnerability in web
application based on severity ratings analysis. The tools
used for this purpose are : the Common Vulnerability and
Exposures(CVE) standard [7], an industry standard for
vulnerability and exposure names; the Common Weakness
Enumeration (CWE) [6], which lists software weaknesses;
the Common vulnerability Scoring System (CVSS) [8], a
vulnerability scoring system design to provide open and
standardized method that rate software vulnerability;
Common Attack Pattern Enumeration and Classification
(CAPEC) [9], a list of attack patterns. These tools help us
to find the vulnerability ranking.

The vulnerabilities found are generally disclosed by the
finders using some of the common reporting mechanisms
that have been developed. Some of them use a scoring
system such as Common Vulnerability Scoring System
(CVSS). The databases for the vulnerabilities and defects
are maintained by organizations such as National
Vulnerability Database (NVD) [4], Open Source
Vulnerability Database, US-CERT, Secunia, etc. We have
used the NVD database because it provides the most
extensive datasets. NVD is the U.S. government repository
of vulnerability management data collected and organized
using specific standards. It includes databases of security
checklists, security related software flaws,
misconfigurations, product names, and impact metrics.
NVD is synchronized with Common Vulnerabilities and
Exposures (CVE), which is a list of information security
vulnerabilities and exposures that aims to provide common
names for publicly known problems, so that any updates to
CVE appear immediately on NVD. Since detected and
qualified vulnerabilities take some time become an official
CVE entry, the database does not reflect all the
vulnerabilities. Each CVE listed in NVD has a
corresponding CVSS score, and according to the types of
vulnerabilities, there are 23 categories of vulnerabilities in
NVD; however, nine of them have not been mapped to the
attack patterns of CAPEC till now. To improve the
accuracy in our approach, we decided to work with only the

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1394

14 types of vulnerabilities that have been mapped to attack
patterns of CAPEC.

The rest of the paper is organized as follows: Section II
is review work, Section III discusses the ranking algorithm,
Section IV presents two examples to illustrate our
approach, Section V compares the existing and proposed
work and Section VI includes conclusion and future scope.

II. REVIEW OF EXISTING WORK

JuAn Wang et al., [1] proposed a mathematical method
for ranking attacks based on vulnerability analysis. In this
paper they calculated the severity level of a potential attack
patterns against a software product and ranking them based
on the software’s vulnerability information. The tools used
for this purpose are: the Common Vulnerabilities and
Exposures (CVE) [7], an industry standard for vulnerability
and exposures names; the Common Weakness Enumeration
(CWE) [6] , which lists software weaknesses; the Common
vulnerability Scoring System (CVSS) [8], a vulnerability
scoring system design to provide open and standardized
method that rate software vulnerability, and the Common
Attack Pattern Enumeration and Classification (CAPEC)
[9], which is a list of attack patterns. In this paper, they
considered only 14 types of software vulnerabilities out of
23 known vulnerabilities. Divided these vulnerabilities into
three time intervals: present , recent and past. Also three
coefficients for three time interval are assumed. These
coefficients are 0.5, 0.3,and 0.2 for present, recent, and past
respectively. Finding weight using these coefficients for
each weakness and all the CAPEC-ID of the respective
weaknesses. Then higher value of weight of attack pattern
is taken with corresponding CAPEC-ID to rank the
vulnerabilities. They have ranked the top ten vulnerabilities
attack patterns for two different browsers namely Mozilla
Firefox 3 and Internet Explorer 7.

III. PROPOSED RANKING ALGORITHM

The proposed vulnerability ranking algorithm is a new
approach for finding the rank of vulnerability for web
application software products. The algorithm is based on
Severity rating. The Severity rating is the rating given by
the National Institute of Standard and Technology,
according to the severity level of the vulnerability
found.The Severity levels are categorized in three types:
Low Severity, Medium Severity, and High Severity. These
severities are having their range to categorize the
vulnerabilities in these levels. The Common Vulnerability
Scoring System (CVSS), is a standard vulnerability scoring
system for rating software vulnerabilities. This CVSS score
is categorized according to their severity level ranges. The
Range of the different Severity Levels are:

Severity Range

Low 0.0 – 3.9
Medium 4.0 – 6.9

High 7.0 – 10.0

The vulnerability information is retrieved from the National
Vulnerability Database. The data is collected for a specific

period of one year, and for specific software products,
namely: Google Chrome and Mozilla Firefox.All the
vulnerabilities collected from NVD are classified in 14
types, there are total of 23 types of vulnerabilities,
according to NVD, we have taken only 14 because the rest
nine are not mapped to attack pattern of CAPEC (Common
Attack Pattern Enumeration and Classification). The
algorithm has following steps:
Step 1: Group the retrieved vulnerabilities in three different
severity levels: low, medium, and high.

Step 2: Calculate the sum of CVE-ID’s scores of individual
vulnerabilities in high, medium, and low severity CVSS
scores, using the following equations:

CVSSHIGH = ∑ ௠ܸܵܵܥ

௜ i (1)

CVSSMEDIUM = ∑ ௠ܸܵܵܥ
௜ i (2)

CVSSLOW = ∑ ௠ܸܵܵܥ
௜ i (3)

where, m is the number of CVE-ids found in each CWE
vulnerability.

Step 3: Calculate the sum of CVSSHIGH, CVSSMEDIUM, and
CVSSLOWof each vulnerabilities, using the equation:

CVSSTOTAL= ∑(CVSSHIGH + CVSSMEDIUM + CVSSLOW) (4)

where, CVSSTOTALis the summation of all the three severity
category CVSS scores of low, medium, and high.

Step 4: There is possibility that in CVSSTOTALcolumn , we
get zero scores in one or multiple places, this is because
there is no such vulnerabilities found in the given time
period. So in this algorithm we have taken only those
vulnerabilities which are actually causing problem. For
this, we have to find the number of non-zero vulnerabilities
columns which is represented by K. The equation for
finding K is :

K = (14 – No. of zeros in CVSSTOTALcolumn) (5)

were ‘14’ represents the total number of types of
vulnerabilities out of 23 known vulnerabilities.

Step 5: Using the K, find the rank of vulnerabilities. The
equation for finding rank is:

Rank = (ہ (CVSSTOTAL)iۂ % K) + 1 (6)

The rank of each vulnerability is calculated by taking
modulo of floor value of CVSSTOTALand one is added to it.
In our algorithm, lesser the rank value (1 is less than 2)
higher is the vulnerability.

Step 6: Finally, the ranking of top ten vulnerabilities is
decided by taking the maximum frequency of occurrences
of CAPEC-ID according to the rank value.

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1395

IV. EXAMPLES
Example 1: Google Chrome v 49.
1. Categorizing the vulnerabilities.
Collected vulnerabilities and grouped them in accordance with the
14 fixed types in CWE. Second, we categorized the vulnerabilities
of each type according to the high, medium, and low severity.

Weakness
(CWE)

CWE-
ID

HIGH MEDIUM LOW

Authenti-cation
Issues

CWE-
287

None None None

Buffer
Errors

CWE-
119

CVE-2015-
8480(10.0)
CVE-2015-
8479(7.5)
CVE-2015-
6778(7.5)
CVE-2015-
6764(7.5)
CVE-2015-
1360(7.5)

CVE-2015-
6776(6.8)
CVE-2015-
1273(6.8)
CVE-2015-
1271(6.8)
CVE-2015-
1240(5.0)
CVE-2015-
1225(5.0)

None

Code
Injections

CWE-
94

None None None

Cross-Site
Request
Forgery
(CSRF)

CWE-
352

None None None

Cross-Site
Scripting
(XSS)

CWE-
79

None

CVE-2015-
1286(4.3)
CVE-2015-
1275(4.3)
CVE-2015-
1264(4.3)

None

Format String
Vulnerability

CWE-
134

None None None

Information
Leak/
Disclosure

CWE-
200

None

CVE-2015-
6759(5.0)
CVE-2015-
1285(5.0)
CVE-2015-
1247(5.0)
CVE-2015-
1244(5.0)

None

Input
Validation

CWE-
20

CVE-2015-
1302(7.5)
CVE-2015-
1303(7.5)
CVE-2015-
1284(7.5)

CVE-2015-
6790(4.3)
CVE-2015-
6784(4.3)
CVE-2015-
1261(5.0)
CVE-2015-
1241(4.3)

None

Link Following
CWE-
59

None None None

OS
Command
Injections

CWE-
78

None None None

Path
Traversal

CWE-
22

None None None

Permissions,
Privileges
And Access
Control

CWE-
264

CVE-2015-
6770(7.5)
CVE-2015-
6768(7.5)
CVE-2015-
6755(7.5)
CVE-2015-
1293(7.5)
CVE-2015-
3335(7.5)

CVE-2015-
6786(4.3)
CVE-2015-
6779(4.3)
CVE-2015-
1292(5.0)
CVE-2015-
1291(6.4)
CVE-2015-
3336(4.3)

None

Race
Conditions

CWE-
362

CVE-2015-
6789(9.3)

CVE-2015-
6761(6.8)
CVE-2015-
1234(6.8)

None

SQL Injection
CWE-
89

None None None

2. Calculate CVSSHIGH,CVSSMEDIUM,CVSSLOWand CVSSTOTAL
using the following equations:

CVSSHIGH = ∑ ௠ܸܵܵܥ

௜ i (1)

CVSSMEDIUM = ∑ ௠ܸܵܵܥ
௜ i (2)

CVSSLOW = ∑ ௠ܸܵܵܥ
௜ i (3)

CVSSTOTAL= ∑(CVSSHIGH + CVSSMEDIUM + CVSSLOW) (4)

Weakness CVSSHIGH CVSSMEDIUM CVSSLOW CVSSTOTAL

Authenti-
cation
Issues 0 0 0 0
Buffer
 Errors 40 30.4 0 70.4
Code
Injections 0 0 0 0
Cross-Site
Request
Forgery 0 0 0 0
Cross-Site
Scripting 0 12.9 0 12.9
Format
String
Vulnerability 0 0 0 0
Information
Leak/

Disclosure 0 20 0 20
Input
Validation 22.5 17.9 0 40.4
Link
Following 0 0 0 0
OS
Command
Injections 0 0 0 0
Path
Traversal 0 0 0 0
Permission,
Privileges,
and
Access
control 37.5 24.3 0 61.8
Race
Condition 9.3 13.6 0 22.9
SQL
Injection 0 0 0 0

3. Calculate K, the number of non-zero entries in
CVSSTOTAL column using the equation:

K = (14 – No. of zeros in CVSSTOTALcolumn) (5)
 Here, K= 6.

4.Rank the vulnerabilities with CAPEC-ID, using the
equation:

Rank = (ہ (CVSSTOTAL)iۂ % K) + 1 (6)

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1396

Vulnerability/
Weakness

Rank CAPEC-ID

Cross-Site
Scripting

1 18,19,32,85,86,91

Permission,
Privileges and
Access Control

2 5,17,35,58,69,76

Information
leak/
Disclosure,
Race Condition

3
13,22,59,60,79,
26,29

__ 4 __

Buffer Errors,
Input
Validation

5

3,7,8,9,10,13,14,22,24,31,32,42,
43,44,45,46,47,52,53,63,64,66,
67,71,72,73,78,79,80,81,83,85,
86,88,91,99

__ 6 __

5.Top ten vulnerability of Google Chrome.
The ranking of top ten vulnerabilities is decided by taking
the maximum frequency of occurrences of CAPEC-ID
according to the rank value.

CAPEC-ID Description

CAPEC-13 Subverting Environment Variable Values

CAPEC-18 Embedding Scripts in Non-Script Elements

CAPEC-19 Embedding Scripts within Scripts

CAPEC-22 Exploiting Trust in Client

CAPEC-32 Embedding Scripts in HTTP Query Strings

CAPEC-35
Leverage Executable Code in Non-executable
File

CAPEC-79 Using Slashes in Alternate Encoding

CAPEC-85 AJAX Fingerprinting

CAPEC-86 Embedding Script (XSS) in HTTP Headers

CAPEC-91 XML Parser Attack

Example 2: Mozilla Firefox v 44.
1. Categorize vulnerabilities.
As with the first example, retrieve vulnerabilities and
grouped them in accordance with the 14 fixed types in
CWE and categorized the vulnerabilities of each type
according to the high, medium, and low severity.

Weakness
(CWE)

CWE-ID HIGH MEDIUM LOW

Authenti-
cation
Issues

CWE-287 None None None

Buffer
Errors

CWE-119

CVE-2015-
7221(10.0)
CVE-2015-
7220(10.0)
CVE-2015-
7203(10.0)
CVE-2015-
7194(7.5)
CVE-2015-
7176(7.5)

CVE-2015-
7217(4.3)
CVE-2015-
7189(6.8)
CVE-2015-
4512(6.4)
CVE-2015-
4511(6.8)

None

Code
Injections

CWE-94
CVE-2014-
8636(7.5)

None None

Cross-Site
Request
Forgery
(CSRF)

CWE-352 None

CVE-2015-
0807(6.8)
CVE-2014-
8638(6.8)

None

Cross-Site
Scripting
(XSS)

CWE-79 None

CVE-2015-
7191(4.3)
CVE-2015-
4518(4.3)
CVE-2015-
4490(4.3)

None

Format String
Vulnerability

CWE-134 None None None

Information Leak/
Disclosure

CWE-200 None

CVE-2015-
7215(5.0)
CVE-2015-
7208(5.0)
CVE-2015-
7186(4.3)
CVE-2015-
4515(4.3)

None

Input
Validation

CWE-20 None

CVE-2015-
7216(6.8)
CVE-2015-
7211(5.0)
CVE-2015-
0799(4.3)

None

Link
Following

CWE-59 None None None

OS Command
Injections

CWE-78 None None None

Path
Traversal

CWE-22 None None None

Permissions,
Privileges and
Access Control

CWE-264

CVE-2015-
0804(7.5)
CVE-2015-
0803(7.5)
CVE-2015-
0818(7.5)
CVE-2015-
8021(6.8)
CVE-2015-
8643(7.1)

CVE-2015-
7223(4.0)
CVE-2015-
7197(5.0)
CVE-2015-
4505(6.6)
CVE-2015-
4483(4.3)
CVE-2015-
0821(6.8)

CVE-
2015-
2714
(2.1)

Race
Conditions

CWE-362 None

CVE-2015-
7189(6.8)
CVE-2015-
4510(6.8)
CVE-2014-
8640(5.0)

CVE-
2015-
4481
(3.3)

SQL Injection CWE-89 None None None

2. Calculate CVSSHIGH,CVSSMEDIUM,CVSSLOWand CVSSTOTAL
using the following equations:

CVSSHIGH = ∑ ௠ܸܵܵܥ

௜ i (1)

CVSSMEDIUM = ∑ ௠ܸܵܵܥ
௜ i (2)

CVSSLOW = ∑ ௠ܸܵܵܥ
௜ i (3)

CVSSTOTAL= ∑(CVSSHIGH + CVSSMEDIUM + CVSSLOW) (4)

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1397

Weakness CVSSHIGH CVSSMEDIUM CVSSLOW CVSSTOTAL

Authenti-
cation
Issues

0 0 0 0

Buffer Errors 45 24.3 0 69.3

Code
Injections

7.5 0 0 7.5

Cross‐Site
Request
Forgery

0 13.6 0 13.6

Cross‐Site
Scripting

0 12.9 0 12.9

Format
String
Vulnerability

0 0 0 0

Information
Leak/
Disclosure

0 18.6 0 18.6

Input
Validation

22.5 16.1 0 38.6

Link Following 0 0 0 0

OS
Command
Injections

0 0 0 0

Path Traversal

0 0 0 0

Permission,
Privileges, and
Access control

36.4 26.7 2.1 65.2

Race
Condition

0 18.6 3.3 21.9

SQL
Injection

0 0 0 0

3. Calculate K, the number of non-zero entries in
CVSSTOTALcolumn using the equation:

K = (14 – No. of zeros in CVSSTOTALcolumn) (5)

Here, K= 8.

4. Rank the vulnerabilities with CAPEC-ID, using the
equation:

Rank = (ہ (CVSSTOTAL)iۂ % K) + 1 (6)

Vulnerability/Weakness Rank CAPEC-ID

__ 1 __
Permission, Privileges,
and Access control

2 5,17,35,58,69,76

Information Leak/
Disclosure

3 13,22,59,60,79,

__ 4 __
Cross‐Site Scripting 5 18,19,32,85,86,91
Buffer Errors, Cross‐Site
Request Forgery, Race
Condition

6 8,9,10,14,24,26,29,42,44
,45,46,47,62

Input Validation 7 3,7,8,9,10,13,14,18,22,24,
28,31,32,42,43,88,45,46,
47,52,53,63,64,66,67,71,
72,73,78,79,80,81,83,85,
86,91,99

Code Injections 8 35,77

5.Top ten vulnerability of Mozilla Firefox.
The ranking of top ten vulnerabilities is decided by taking
the maximum frequency of occurrences of CAPEC-ID
according to the rank value.

CAPEC-ID Description

CAPEC-13 Subverting Environment Variable Values

CAPEC-32 Embedding Scripts in HTTP Query Strings

CAPEC-35 Leverage Executable Code in Non-executable File

CAPEC-45 Buffer Overflow via Symbolic Links

CAPEC-46 Overflow Variables and Tags

CAPEC-47 Buffer Overflow via Parameter Expansion

CAPEC-79 Using Slashes in Alternate Encoding

CAPEC-85 AJAX Fingerprinting

CAPEC-86 Embedding Script (XSS) in HTTP Headers

CAPEC-91 XML Parser Attack

V. COMPARISON WITH EXISTING WORK

Comparing the purposed work with the existing work [1],
will give some relationship between these two
methodologies. The tools used in these methods are CWE,
CVE, CVSS, and CAPEC. These are the standard tools
used to represent a good security metrics. The browsers
which are taken by the existing work are Mozilla Firefox 3
and Internet Explorer 7 and the internet browsers taken for
analysis in the proposed work are Google Chrome v 49 and
Mozilla Firefox v 44. The top ten attack pattern
vulnerability of Mozilla Firefox and Internet Explorer of
the existing work is shown in the following table:

Mozilla Firefox 3 Internet Explorer 7
CAPEC-
ID

Description CAPEC-ID Description

CAPEC-
13

Subverting
Environment
Variable Values

CAPEC-8
Buffer Overflow
in an API Call

CAPEC-
17

Accessing,
Modifying or
Executing
Executable Files

CAPEC-9

Buffer Overflow
in Local
Command-Line
Utilities

CAPEC-
22

Exploiting Trust
in Client

CAPEC-10
Buffer Overflow
via Environment
Variables

CAPEC-
32

Embedding
Scripts in HTTP
Query Strings

CAPEC-14
Client-Side
Injection-induced
Buffer Overflow

CAPEC-
35

Leverage
Executable Code
in Non-
executable File

CAPEC-24
Filter Failure
through Buffer
Overflow

CAPEC-
76

Manipulating
Input to File
System Calls

CAPEC-35

Leverage
Executable Code
in Non-executable
File

CAPEC-
79

Using Slashes in
Alternate
Encoding

CAPEC-42 MIME Conversion

CAPEC-
85

AJAX
Fingerprinting

CAPEC-45
Buffer Overflow
via Symbolic
Links

CAPEC-
86

Embedding
Script (XSS) in
HTTP Headers

CAPEC-46
Overflow
Variables and
Tags

CAPEC-
91

XML Parser
Attack

CAPEC-77
Manipulating
User-Controlled
Variables

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1398

The top ten attack pattern vulnerability of Google Chrome
and Mozilla Firefox of the proposed work is shown in the
table given below:

Google Chrome v 49. Mozilla Firefox v 44.
CAPEC-
ID

Description
CAPEC-
ID

Description

CAPEC-
13

Subverting
Environment
Variable Values

CAPEC-
13

Subverting
Environment
Variable Values

CAPEC-
18

Embedding
Scripts in Non-
Script Elements

CAPEC-
32

Embedding Scripts in
HTTP Query Strings

CAPEC-
19

Embedding
Scripts within
Scripts

CAPEC-
35

Leverage Executable
Code in Non-
executable File

CAPEC-
22

Exploiting
Trust in Client

CAPEC-
45

Buffer Overflow via
Symbolic Links

CAPEC-
32

Embedding
Scripts in
HTTP Query
Strings

CAPEC-
46

Overflow Variables
and Tags

CAPEC-
35

Leverage
Executable
Code in Non-
executable File

CAPEC-
47

Buffer Overflow via
Parameter Expansion

CAPEC-
79

Using Slashes
in Alternate
Encoding

CAPEC-
79

Using Slashes in
Alternate Encoding

CAPEC-
85

AJAX
Fingerprinting

CAPEC-
85

AJAX Fingerprinting

CAPEC-
86

Embedding
Script (XSS) in
HTTP Headers

CAPEC-
86

Embedding Script
(XSS) in HTTP
Headers

CAPEC-
91

XML Parser
Attack

CAPEC-
91

XML Parser Attack

Analyzing the top ten vulnerabilities of existing and
proposed methodologies on different browsers, the attack
which are mostly common in these are Buffer Overflow,
Cross-site scripting, Input Validation and others are same
in both the methodologies. This shows a good relationship
between proposed and existing work.

VI. CONCLUSION AND FUTURE SCOPE
Security in web browsers is one of the prime importance in
the Internet world. Web browser allow user to view
information on Internet by retrieving data from remote
servers and displaying in the user’s system. Web browsers
are the common target for attacker to hack the information
about user’s system and other files. The other security
threat is that hackers like to execute malicious code by

exploiting a buffer overflow, cross-site scripting or
injecting code or other application code in order to make
system function abnormally. The Buffer Overflow is occurs
when a browser permits a read and write operation on
memory outside the allocated space. Buffer Overflow is
severe attack pattern found in both the methodologies as it
is very common vulnerability or weakness in the web
browsers. Cross-site scripting (XSS) occurs when an
application fails to block the data which is executable by a
browser like add-ons [6]. Input Validation is occurs when
an application fails to validate the input data properly
[5].Ranking the vulnerability is helpful for the software
developer to pay more attention on these vulnerabilities so
that developing the patches for the most common
vulnerabilities will be easy. In future, more statistical
analysis will be possible to validate the reliability and
accuracy in our metrics. Also, a precise mathematical
model is needed to uplift our security metrics.

REFERENCES
[1] Ju An Wang, Hao Wang, MinzheGuo, Linfeng Zhou, and Jairo

Camargo, “Ranking Attacks Based On Vulnerability Analysis”,
proceeding of the 43rd Hawaii International Conference on System
Sciences, 2010, pp.1-10.

[2] M. Gegick, L. Williams, J. Osborne, and M. Vouk, “Ranking
Attack-porne Components with a Predictive Model”: proceeding of
19th International Symposium on Software Reliability Engineering,
2008.

[3] AnshuTripathi and Umesh K. Singh, “On prioritization of
vulnerability categories based on CVSS scores”, 2011,
6thInternational Conference on Computer Science and Convergence
Information Technology, pp. 692-697.

[4] HyunChulJoh, and Yashwant K. Malaiya, “Seasonal Variation in
the Vulnerability Discovery Process”: 2009 International
Conference on Software Testing Verification and Validation, pp.
191-200.

[5] National Institute of Standard and Technology, National
Vulnerability Database.[Online] Available: http://nvd.nist.gov ,
accessed on January 2016.

[6] J. Whittaker, H. Thompson, ”How to break software security”, June
2003.

[7] Common Weakness Enumeration (CWE), The MITRE
Corporation, [Online] Available: http://cwe.mitre.org/, accessed on
January 2016.

[8] Common Vulnerability and Exposures (CVE), the MITRE
Corporation. [Online] Available: http://cve.mitre.org/ , January
2016.

[9] Common Vulnerability Scoring System (CVSS), the MITRE
Corporation. [Online] Available: http://www.first.org/cvss/ ,
January 2016.

[10] Common Attack Pattern Enumeration and Classification (CAPEC),
the MITRE Corporation. [Online] Available: http://capec.mitre.org/
, January 2016.

Nitish Kumar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 7 (3) , 2016, 1394-1399

www.ijcsit.com 1399

